If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=2=0
We move all terms to the left:
2x^2+4x-(2)=0
a = 2; b = 4; c = -2;
Δ = b2-4ac
Δ = 42-4·2·(-2)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{2}}{2*2}=\frac{-4-4\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{2}}{2*2}=\frac{-4+4\sqrt{2}}{4} $
| (6x+3)+(2x-15)+(3x+16)=180 | | (6x+6)=90 | | 3/10=n50n= | | 8x+50=11x−4 | | -5+8m=7m-2 | | 4x-1=53 | | 5d-15=10 | | 6(x-2)-2x=4x* | | 74=y+18 | | (5x-11)=24 | | -29=3(v-3)-8v | | 7v+8=2+6v-2v | | 10y-18=3(5y+7)-5y | | 10x-6=10-8x | | 7x-30=-2(x-3) | | 4+6r-7=3r+54-11 | | 25^y=125 | | y=-4*3-10 | | 9=1/4(4+y) | | -4x-10=-7x-2 | | 0.95x+0.99(16-x)-15.52=0 | | 39=5(h+3)-2h | | -7n+4n=n-3+2-3 | | 39=3h+15 | | -3x=15=27 | | (x+9)+(3x-5)+(7x)=180 | | H(4)=1/2x-14 | | 5c-26+4c=6c | | 29+-11x+x2=0 | | 4(x+3)=2x+40 | | (x–5^)2+8=-16 | | 2x+76(5x-2)=180 |